8,048 research outputs found

    High-efficiency cluster-state generation with atomic ensembles via the dipole-blockade mechanism

    Get PDF
    We demonstrate theoretically a scheme for cluster-state generation, based on atomic ensembles and the dipole-blockade mechanism. In the protocol, atomic ensembles serve as single-qubit systems. Therefore, we review single-qubit operations on qubit defined as collective states of atomic ensemble. Our entangling protocol requires nearly identical single-photon sources, one ultracold ensemble per physical qubit, and regular photodetectors. The general entangling procedure is presented, as well as a procedure that generates in a single step Q-qubit GHZ states with success probability p(success) similar to eta(Q/2), where eta is the combined detection and source efficiency. This is significantly more efficient than any known robust probabilistic entangling operation. GHZ states form the basic building block for universal cluster states, a resource for the one-way quantum computer

    A Quantum Rosetta Stone for Interferometry

    Get PDF
    Heisenberg-limited measurement protocols can be used to gain an increase in measurement precision over classical protocols. Such measurements can be implemented using, e.g., optical Mach-Zehnder interferometers and Ramsey spectroscopes. We address the formal equivalence between the Mach-Zehnder interferometer, the Ramsey spectroscope, and the discrete Fourier transform. Based on this equivalence we introduce the ``quantum Rosetta stone'', and we describe a projective-measurement scheme for generating the desired correlations between the interferometric input states in order to achieve Heisenberg-limited sensitivity. The Rosetta stone then tells us the same method should work in atom spectroscopy.Comment: 8 pages, 4 figure

    Preparing multi-partite entanglement of photons and matter qubits

    Full text link
    We show how to make event-ready multi-partite entanglement between qubits which may be encoded on photons or matter systems. Entangled states of matter systems, which can also act as single photon sources, can be generated using the entangling operation presented in quant-ph/0408040. We show how to entangle such sources with photon qubits, which may be encoded in the dual rail, polarization or time-bin degrees of freedom. We subsequently demonstrate how projective measurements of the matter qubits can be used to create entangled states of the photons alone. The state of the matter qubits is inherited by the generated photons. Since the entangling operation can be used to generate cluster states of matter qubits for quantum computing, our procedure enables us to create any (entangled) photonic quantum state that can be written as the outcome of a quantum computer.Comment: 10 pages, 4 figures; to appear in Journal of Optics

    The creation of large photon-number path entanglement conditioned on photodetection

    Get PDF
    Large photon-number path entanglement is an important resource for enhanced precision measurements and quantum imaging. We present a general constructive protocol to create any large photon number path-entangled state based on the conditional detection of single photons. The influence of imperfect detectors is considered and an asymptotic scaling law is derived.Comment: 6 pages, 4 figure

    Super-resolving multi-photon interferences with independent light sources

    Full text link
    We propose to use multi-photon interferences from statistically independent light sources in combination with linear optical detection techniques to enhance the resolution in imaging. Experimental results with up to five independent thermal light sources confirm this approach to improve the spatial resolution. Since no involved quantum state preparation or detection is required the experiment can be considered an extension of the Hanbury Brown and Twiss experiment for spatial intensity correlations of order N>2

    A Study on Edge-Set Graphs of Certain Graphs

    Full text link
    Let G(V,E)G(V, E) be a simple connected graph, with ∣E∣=ϵ.|E| = \epsilon. In this paper, we define an edge-set graph GG\mathcal G_G constructed from the graph GG such that any vertex vs,iv_{s,i} of GG\mathcal G_G corresponds to the ii-th ss-element subset of E(G)E(G) and any two vertices vs,i,vk,mv_{s,i}, v_{k,m} of GG\mathcal G_G are adjacent if and only if there is at least one edge in the edge-subset corresponding to vs,iv_{s,i} which is adjacent to at least one edge in the edge-subset corresponding to vk,mv_{k,m} where s,ks,k are positive integers. It can be noted that the edge-set graph GG\mathcal G_G of a graph GG id dependent on both the structure of GG as well as the number of edges ϵ.\epsilon. We also discuss the characteristics and properties of the edge-set graphs corresponding to certain standard graphs.Comment: 10 pages, 2 figure

    Unifying parameter estimation and the Deutsch-Jozsa algorithm for continuous variables

    Get PDF
    We reveal a close relationship between quantum metrology and the Deutsch-Jozsa algorithm on continuous-variable quantum systems. We develop a general procedure, characterized by two parameters, that unifies parameter estimation and the Deutsch-Jozsa algorithm. Depending on which parameter we keep constant, the procedure implements either the parameter-estimation protocol or the Deutsch-Jozsa algorithm. The parameter-estimation part of the procedure attains the Heisenberg limit and is therefore optimal. Due to the use of approximate normalizable continuous-variable eigenstates, the Deutsch-Jozsa algorithm is probabilistic. The procedure estimates a value of an unknown parameter and solves the Deutsch-Jozsa problem without the use of any entanglement
    • …
    corecore